|
| 1: |
|
app(nil,k) |
→ k |
| 2: |
|
app(l,nil) |
→ l |
| 3: |
|
app(cons(x,l),k) |
→ cons(x,app(l,k)) |
| 4: |
|
sum(cons(x,nil)) |
→ cons(x,nil) |
| 5: |
|
sum(cons(x,cons(y,l))) |
→ sum(cons(plus(x,y),l)) |
| 6: |
|
sum(app(l,cons(x,cons(y,k)))) |
→ sum(app(l,sum(cons(x,cons(y,k))))) |
| 7: |
|
plus(0,y) |
→ y |
| 8: |
|
plus(s(x),y) |
→ s(plus(x,y)) |
| 9: |
|
sum(plus(cons(0,x),cons(y,l))) |
→ pred(sum(cons(s(x),cons(y,l)))) |
| 10: |
|
pred(cons(s(x),nil)) |
→ cons(x,nil) |
|
There are 9 dependency pairs:
|
| 11: |
|
APP(cons(x,l),k) |
→ APP(l,k) |
| 12: |
|
SUM(cons(x,cons(y,l))) |
→ SUM(cons(plus(x,y),l)) |
| 13: |
|
SUM(cons(x,cons(y,l))) |
→ PLUS(x,y) |
| 14: |
|
SUM(app(l,cons(x,cons(y,k)))) |
→ SUM(app(l,sum(cons(x,cons(y,k))))) |
| 15: |
|
SUM(app(l,cons(x,cons(y,k)))) |
→ APP(l,sum(cons(x,cons(y,k)))) |
| 16: |
|
SUM(app(l,cons(x,cons(y,k)))) |
→ SUM(cons(x,cons(y,k))) |
| 17: |
|
PLUS(s(x),y) |
→ PLUS(x,y) |
| 18: |
|
SUM(plus(cons(0,x),cons(y,l))) |
→ PRED(sum(cons(s(x),cons(y,l)))) |
| 19: |
|
SUM(plus(cons(0,x),cons(y,l))) |
→ SUM(cons(s(x),cons(y,l))) |
|
The approximated dependency graph contains 4 SCCs:
{11},
{17},
{12}
and {14}.